首页> 中文期刊> 《稀有金属:英文版》 >Tri-functionalized polypropylene separator by rGO/MoO_(2) composite for high-performance lithium–sulfur batteries

Tri-functionalized polypropylene separator by rGO/MoO_(2) composite for high-performance lithium–sulfur batteries

         

摘要

The popularity of lithium–sulfur batteries has been increasing gradually due to their ultrahigh theoretical specific capacity and energy density. Nevertheless, they also have lots of drawbacks to be overcome, such as poor conductivity, severe volume expansion, and serious“shuttle effect”. In this work, reduced graphene oxide/molybdenum dioxide(rGO/MoO_(2)) composite is synthesized and applied to modify polypropylene separator. The modified polypropylene separator introduces synergistic tri-functions of physical adsorption, chemical interaction and catalytic effects, which can inhibit the“shuttle effect” and enhance the electrochemical performances of lithium-sulfur batteries. In the prepared r GO/MoO_(2) composite, the polar MoO_(2) chemically adsorbs the intermediate lithium polysulfide, while the rGO with good electrical conductivity not only acts as a physical barrier to prevent diffusion of polysulfide ions, but also improves the conversion efficiency of active material intercepted on the separator. As a consequence, the battery assembled with rGO/MoO_(2) modified polypropylene separator exhibits a reversible capacity of 757.5 mAh·g^(-1) after 200 cycles at0.2 C with a negligible capacity decay of 0.207% per cycle,which indicates a good long-period cycling stability. Furthermore, the rate performance and self-discharge suppression are also improved by introducing modified polypropylene separator. It shows that rGO/MoO_(2) composite is a promising material for separator modification in lithium-sulfur batteries.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号