首页> 中文期刊> 《稀有金属:英文版》 >Micro-structured lepidocrocite-type H_(1.07)Ti_(1.73)O_(4)as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance

Micro-structured lepidocrocite-type H_(1.07)Ti_(1.73)O_(4)as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance

         

摘要

The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries(LIB).The ion exchange method provides favorable conditions for H_(1.07)Ti_(1.73)O_(4) as an anode electrode material for LIBs.X-ray photoelectron spectroscopy(XPS)result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4,which have a beneficial effect on the LIB performance.The electrochemical performance test proves that the half-cell with microsized H_(1.07)Ti_(1.73)O_(4)as the anode electrode can maintain a specific capacity of 129.5 mAh·g^(-1) after 1100 cycles and 101 mAh·g^(-1)after 3000 long cycles at high current densities of 2.0 and 5.0 A·g^(-1),respectively.In addition,the small volume change rate of 3.6%in H_(1.07)Ti_(1.73)O_(4)during Li ion insertion was confirmed by real-time in situ transmission electron microscopy(TEM).The LiFePO_(4)||H_(1.07)Ti_(1.73)O_(4)full battery exhibits a longterm cycling stability with a specific capacity of73.8 mAh·g^(-1) at a current density of 500 mA·g^(-1) after 200 cycles.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号