首页> 中文期刊> 《稀有金属:英文版 》 >Calcium-and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials

Calcium-and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials

         

摘要

Ni-rich lithium nickel–cobalt-manganese oxides(NCM) are considered the most promising cathode materials for lithium-ion batteries(LIBs);however, relatively poor cycling performance is a bottleneck preventing their widespread use in energy systems. In this work, we propose the use of a dually functionalized surface modifier, calcium sulfate(CaSO_(4), CSO), in an efficient one step method to increase the cycling performance of Ni-rich NCM cathode materials. Thermal treatment of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode materials with a CSO precursor allows the formation of an artificial Ca-and SO_(x)-functionalized cathode–electrolyte interphase(CEI) layer on the surface of Ni-rich NCM cathode materials. The CEI layer then inhibits electrolyte decomposition at the interface between the Ni-rich NCM cathode and the electrolyte. Successful formation of the CSO-modified CEI layer is confirmed by scanning electron microscopy(SEM) and Fourier transform infrared(FTIR) spectroscopy analyses, and the process does not affect the bulk structure of the Ni-rich NCM cathode material. During cycling, the CSO-modified CEI layer remarkably decreases electrolyte decomposition upon cycling at both room temperature and 45 ℃, leading to a substantial increase in cycling retention of the cells. A cell cycled with a 0.1 CSO-modified(modified with 0.1% CSO)NCM811 cathode exhibits a specific capacity retention of90.0%, while the cell cycled with non-modified NCM811 cathode suffers from continuous fading of cycling retention(74.0%) after 100 cycles. SEM, electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS), and inductively coupled plasma mass spectrometry(ICP-MS) results of the recovered electrodes demonstrate that undesired surface reactions such as electrolyte decomposition and metal dissolution are well controlled in the cell because of the artificial CSO-modified CEI layer present on the surface of Ni-rich NCM811 cathodes.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号