首页> 中文期刊> 《大气科学进展:英文版》 >Modeling Study of Aerosol Indirect Effectson Global Climate with an AGCM

Modeling Study of Aerosol Indirect Effectson Global Climate with an AGCM

         

摘要

Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol-cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hemisphere, whereas in winter, large values were found at 60°S. The second indirect effect led to global annual mean changes in net shortwave flux of -1.03 W m-2 at the top of the atmosphere (TOA), which was relatively significant in mid-latitude regions of both hemispheres. The total AIE reduced the global annual means of net shortwave flux at the TOA and of surface temperature by 1.93 W m-2 and 0.12 K, respectively. Change in surface temperature induced by the total AIE was clearly larger in the Northern Hemisphere (-0.23 K) than in the Southern Hemisphere, where changes were negligible. The interhemispheric asymmetry in surface cooling resulted in significant differences in changes of the interhemispheric annual mean precipitation rate, which could lead to a tendency for the ITCZ to broaden. The total AIE decreased the global annual mean precipitation rate by 0.055 mm dff1.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号