首页> 中文期刊> 《高分子科学:英文版》 >Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology

Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology

         

摘要

Computational strategies have been employed to investigate the influence of the nature of monomers and cross-linker in order to design three dimensional imprinted polymers with selective recognition sites for L-phenylalanine benzyl ester(L-PABE)molecule.Here,computational chemistry methods were applied to screen the molar quantity of functional monomers that interact with one mole of the template molecule.Effects of the nature of functional monomer,cross-linker,and molar ratio were determined computationally using density functional calculations with B3LYP functional and generic 6-31G basis set.Methacrylic acid(MAA)and ethylene glycol dimethacrylate(EGDMA)were used as the functional monomer and crosslinking agent,respectively.L-PABE imprinted polymer layered on multiwalled carbon nanotube(MWCNT)and conventional bulk MIP were synthesised and characterized as well.To investigate the influence of pre-organization of binding sites on the selectivity of L-PABE,respective non-imprinted polymers were also synthesised.MWCNT-MIPs and MIPs exhibited the highest adsorption capacity towards L-PABE.The synthesized polymers revealed characteristic adsorption features and selectivity towards L-PABE in comparison with those of its enantiomer analogues.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号