首页> 中文期刊> 《土壤圈:英文版》 >Wien Effect in Suspensions of Electrodialyzed Soil Particles and Its Influencing Factors

Wien Effect in Suspensions of Electrodialyzed Soil Particles and Its Influencing Factors

         

摘要

The electrical conductivity of suspensions and their supernatants from the electrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated with nitrate solutions were determined at different field strengths using a short high-voltage pulse apparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affecting it. It was found that Wien effect was much stronger in suspensions with a clay content of 30 g kg-1 from the soils equilibrated with a 1 × 10-4 KNO3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., the Wien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 g kg-1) equilibrated with different nitrate solutions of a concentration of 1 × 10-4/z mol L-1 , where z is the valence, varied with the type of nitrates, being lowest for NaNO3 (47 kV cm-1) and highest for Ca(NO3)2 (98 kV cm-1). At high field strengths (larger than 130 kV cm-1), the relative conductivities of yellow-brown soil suspensions containing different nitrates diminished in the order: NaNO3 > KNO3 > Mg(NO3)2 > Zn(NO3)2 > Ca(NO3)2. The rates and intensities of the Wien effect in the suspensions of the three soils equilibrated with 5 × 10-5 molL-1 Ca(NO3)2 solution were in the order of the yellow-brown soil > the latosol > the black soil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg-1) equilibrated with KNO3 solutions of various concentrations clearly demonstrated that the more dilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensions at high field strengths. The results for yellow-brown soil suspensions with different clay concentrations indicated that as the clay concentration increased, the low field electrical conductivity, EC0, also increased, but the TFS decreased, and the Wien effect increased.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号