首页> 外文期刊>颗粒学报(英文版) >A novel coated-particle design and fluidized-bed chemical vapor deposition preparation method for fuel-element identification in a nuclear reactor
【24h】

A novel coated-particle design and fluidized-bed chemical vapor deposition preparation method for fuel-element identification in a nuclear reactor

机译:核反应堆燃料元素识别的新型包覆粒子设计和流化床化学气相沉积制备方法

获取原文
获取原文并翻译 | 示例
       

摘要

Particle coating is an important method that can be used to expand particle-technology applications.Coated-particle design and preparation for nuclear fuel-element trajectory tracing were focused on in this paper.Particles that contain elemental cobalt were selected because of the characteristic gamma ray spectra of 60Co.A novel particle-structure design was proposed by coating particles that contain elemental cobalt with a high-density silicon-carbide (SiC) layer.During the coating process with the highdensity SiC layer,cobalt metal was formed and diffused towards the coating,so an inner SiC-CoxSi layer was designed and obtained by fluidized-bed chemical vapor deposition coupled with in-situ chemical reaction.The coating layers were studied by X-ray diffractometry,scanning electron microscopy,and energy dispersive X-ray spectroscopy techniques.The chemical composition was also determined by inductively coupled plasma optical emission spectrometry.The novel particle design can reduce the formation of metallic cobalt and prevent cobalt diffusion in the coating process,which can maintain safety in a nuclear reactor for an extended period.The experimental results also validated that coated particles maintain their structural integrity at extremely high temperatures (~1950 ℃),which meets the requirements of next-generation nuclear reactors.
机译:颗粒涂层是一种可用于扩展颗粒技术应用的重要方法。本文着重于核燃料元素轨迹跟踪的涂层颗粒设计和制备。由于γ射线的特征,选择了包含元素钴的颗粒60Co的光谱。提出了一种新的颗粒结构设计,即用高密度碳化硅(SiC)层涂覆含元素钴的颗粒。在高密度SiC层涂覆过程中,形成钴金属并向其扩散设计并通过流化床化学气相沉积和原位化学反应获得了内部SiC-CoxSi层。通过X射线衍射,扫描电子显微镜和能量色散X射线光谱研究了涂层还通过电感耦合等离子体发射光谱法确定了化学成分。新颖的颗粒设计可以减少t在涂层过程中形成金属钴并防止钴扩散,可以在核反应堆中长期保持安全。实验结果还证实,涂层颗粒在极高的温度(〜1950℃)下仍能保持其结构完整性。符合下一代核反应堆的要求。

著录项

  • 来源
    《颗粒学报(英文版)》 |2017年第2期|35-41|共7页
  • 作者单位

    Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Tsinghua University,Beijing 100084,China;

    Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Tsinghua University,Beijing 100084,China;

    Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Tsinghua University,Beijing 100084,China;

    Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Tsinghua University,Beijing 100084,China;

    Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Tsinghua University,Beijing 100084,China;

    Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Tsinghua University,Beijing 100084,China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号