首页> 中文期刊> 《颗粒学报(英文版)》 >Cyclone separation in a supercritical water circulating fluidized bed reactor for coal/biomass gasification: Structural design and numerical analysis

Cyclone separation in a supercritical water circulating fluidized bed reactor for coal/biomass gasification: Structural design and numerical analysis

         

摘要

A new concept of a supercritical water (SCW) circulating fluidized bed reactor is proposed to produce hydrogen from coal/biomass gasification.The cyclone is a key component of the reactor system,In this paper,cyclones with a single circular inlet (SCI) or a double circular inlet (DCI) were designed to adapt to the supercritical conditions.We evaluated the separation performance of the two cyclones using numerical simulations.A three-dimensional Reynolds stress model was used to simulate the turbulent flow of the fluid,and a stochastic Lagrangian model was used to simulate the particle motion.The flow fields of both cyclones were three-dimensionally unsteady and similar to those of traditional gas-solid cyclones.Secondary circulation phenomena were discovered and their influence on particle separation was estimated.Analyzing the distribution of the turbulence kinetic energy revealed that the most intensive turbulence existed in the zone near the vortex finder while the flow in the central part was relatively stable.The particle concentration distribution was non-uniform because of centrifugal forces.The distribution area can be divided into three parts according to the motion of the particles.In addition,the separation efficiency of both cyclones increased with the inlet SCW velocity.Because of its perturbance flow,the DCI separator had higher separation efficiency than the SCI separator under comparable simulations.However,this was at the expense of a higher pressure drop across the cyclone.

著录项

  • 来源
    《颗粒学报(英文版)》 |2018年第4期|55-67|共13页
  • 作者

  • 作者单位
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号