首页> 中文期刊> 《核技术:英文版》 >Material decomposition of spectral CT images via attention-based global convolutional generative adversarial network

Material decomposition of spectral CT images via attention-based global convolutional generative adversarial network

         

摘要

Spectral computed tomography(CT)based on photon counting detectors can resolve the energy of every single photon interacting with the sensor layer and be used to analyze material attenuation information under different energy ranges,which can be helpful for material decomposition studies.However,there is a considerable amount of inherent quantum noise in narrow energy bins,resulting in a low signal-to-noise ratio,which can consequently affect the material decomposition performance in the image domain.Deep learning technology is currently widely used in medical image segmentation,denoising,and recognition.In order to improve the results of material decomposition,we propose an attention-based global convolutional generative adversarial network(AGC-GAN)to decompose different materials for spectral CT.Specifically,our network is a global convolutional neural network based on an attention mechanism that is combined with a generative adversarial network.The global convolutional network based on the attention mechanism is used as the generator,and a patchGAN discriminant network is used as the discriminator.Meanwhile,a clinical spectral CT image dataset is used to verify the feasibility of our proposed approach.Extensive experimental results demonstrate that AGC-GAN achieves a better material decomposition performance than vanilla U-Net,fully convolutional network,and fully convolutional denseNet.Remarkably,the mean intersection over union,structural similarity,mean precision,PAcc,and mean F1-score of our method reach up to 87.31%,94.83%,93.22%,97.39%,and 93.05%,respectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号