首页> 中文期刊> 《纳米材料科学(英文版)》 >Atomic insights into synergistic effect of pillared graphene by carbon nanotube on the mechanical properties of polymer nanocomposites

Atomic insights into synergistic effect of pillared graphene by carbon nanotube on the mechanical properties of polymer nanocomposites

             

摘要

Molecular dynamics simulations have been performed to explore the underlying synergistic mechanism of pillared graphene or non-covalent connected graphene and carbon nanotubes(CNTs) on the mechanical properties of polyethylene(PE) nanocomposites. By constructing the pillared graphene model and CNTs/graphene model, the effect of the structure, arrangement and dispersion of hybrid fillers on the tensile mechanical properties of PE nanocomposites was studied. The results show that the pillared graphene/PE nanocomposites exhibit higher Young’s modulus, tensile strength and elongation at break than non-covalent connected CNTs/graphene/PE nanocomposites. The pull-out simulations show that pillared graphene by CNTs has both large interfacial load and long displacement due to the mixed modes of shear separation and normal separation. Additionally, pillared graphene can not only inhibit agglomeration but also form a compact effective thickness(stiff layer), consistent with the adsorption behavior and improved interfacial energy between pillared graphene and PE matrix.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号