首页> 中文期刊> 《纳微快报:英文版》 >Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications

Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications

         

摘要

As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,the internet of things,and other fields.In recent years,highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms.Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance.This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors.We discuss different architectures and morphological designs of sensing materials to achieve high performance,including high sensitivity,broad working range,stable sensing,low hysteresis,high transparency,and directional or selective sensing.Additionally,the general fabrication techniques are summarized,including self-assembly,patterning,and auxiliary synthesis methods.Furthermore,we present the emerging applications of high-performing microengineered pressure sensors in healthcare,smart homes,digital sports,security monitoring,and machine learning-enabled computational sensing platform.Finally,the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号