首页> 中文期刊> 《纳微快报:英文版》 >Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox

Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox

         

摘要

Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning.However,the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure.The ideal electronics should not have defective interfaces of dissimilar materials.In this study,we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox(rSLIR)method.Furthermore,rSLIR can control the oxidation state of transition metal(Cu)to yield semiconductors with two different bandgap states(Cu_(2)O and CuO with bandgaps of 2.1 and 1.2 eV,respectively),which may allow multifunctional sensors with multiple bandgaps from the same materials.This novel method enables the seamless integration of single-phase Cu,Cu_(2)O,and CuO,simultaneously while allowing reversible,selec-tive conversion between oxidation states by simply shining laser light.Moreover,we fabricated a flexible monolithic metal-semiconduc-tor-metal multispectral photodetector that can detect multiple wavelengths.The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号