首页> 中文期刊> 《现代电力系统与清洁能源学报(英文)》 >Optimized damping for LCL filters in three-phase voltage source inverters coupled by power grid

Optimized damping for LCL filters in three-phase voltage source inverters coupled by power grid

         

摘要

The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, presenting itself as a voltage source with significant impedance. This means that an inverter using an LCL filter may interact with other grid-connected inverters via the nonideal grid. In this paper, damping optimization of LCLfilters to reduce this interaction is studied for a three-phase voltage source inverter(VSI). Simulation results show that resonant oscillation occurs in a distributed power grid, even if the VSI with an LCL filter is well designed for standalone applications. A small-signal analysis is performed to predict this stability problem and to locate the boundary of the instability using an impedance approach. Based on these analytical results, optimized damping of the LCLfilter can be designed. The oscillation phenomena and optimized damping design are verified by simulations and experimental measurements.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号