首页> 中文期刊> 《振动与冲击 》 >基于多车精细建模的曲线地段重载列车-轨道系统动力性能研究

基于多车精细建模的曲线地段重载列车-轨道系统动力性能研究

             

摘要

建立考虑多车效应的重载列车-轨道系统精细化动力分析模型,对车辆、钩缓装置中各种细部构件及部件间接触摩擦等作用机制进行精细模拟,基于 Hertz 理论及 FASTSIM算法进行轮轨接触计算。利用自主研发设备通过现场参数试验进行轨道建模。深入研究重载铁路曲线地段列车-轨道系统动力性能及曲线参数影响规律。结果表明,缓和曲线地段轮轨相互作用规律复杂,列车不同位置车轮受力呈现迥异变化趋势及幅度,前后缓和曲线轮轨相互作用亦完全不同,主要由超高顺坡及车辆构造所致;缓和曲线长度过短可导致超高顺坡过大不利列车运行,缓和曲线长度对动力性能影响曲线往往存在拐点,建议以拐点值限定最小缓和曲线长度;增长缓和曲线可有效减弱轮轨相互作用,并主要通过减缓列车首车及导向轮对磨耗降低整体磨耗;随缓和曲线长度不断增加,对动力性能改善效果越不明显。我国重载铁路小半径曲线超高设置通常偏大,建议适当降低超高值、设置10%~20%欠超高,利于改善轮轨受力、减缓磨耗。增大曲线半径利于减弱轮轨相互作用及磨耗,但半径越大改善作用越小。%An elaborate heavy haul train-track coupling dynamic model was established,taking into account the effect of multiple vehicles.Various components and interactions between components (e.g.contact friction)of vehicles and coupler buffer devices were modeled detailedly.The wheel-rail contact interactions were calculated based on Hertz's theory and Kalker's FASTSIM algorithm.The track model was established with the help of field parameter experiments conducted by using self-developed devices.Dynamic characteristics of train-track system in curved track sections and influences of curve parameters on dynamic characteristics were investigated.The following conclusions are drawn:The wheel-rail interactions are complicated in transition curve sections.Forces acted on different wheels present different variation trends and intensities,and wheel-rail interactions are also definitely different in front and rear transition curve sections.This is mainly caused by the superelevation slope and the vehicle structure.It is rather adverse for the train operation if the length of transition curve is too short.There usually exists an inflexion on the influencing curves of transition curve length versus dynamic characteristics.It is suggested the smallest length of transition curve be determined according to the inflexion value.Lengthening the transition curve can effectively decrease the wheel-rail interactions and decrease the total wear mainly due to reducing the wear of the leading vehicle and guide wheelsets.However,as the length of transition curve increases,the improvements of dynamic characteristics become less obvious.The superelevation of the outer rail in small-radius curves is generally large in heavy haul railway of China.It is suggested to reduce the superelevation properly and set an inadequate superelevation of 10%-20%,which is conductive to decrease the wheel-rail interactions and wear.Increasing the radius of curve is advantageous for improving the wheel-rail interactions.While the improvement becomes smaller with the further increase of curve radius.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号