首页> 中文期刊> 《上海交通大学学报:英文版》 >Approach for Reliability Evaluation of Cross-Linked Polyethylene Under Combined Thermal and Vibration Stresses

Approach for Reliability Evaluation of Cross-Linked Polyethylene Under Combined Thermal and Vibration Stresses

         

摘要

Based on Wiener process model, a new approach for reliability evaluation of cross-linked polyethylene(XLPE) is proposed to improve the lifetime evaluation reliability of XLPE under multi-stressing conditions and study the failure probability distribution. In this paper, two accelerated aging tests are carried out under combined thermal and vibration conditions. The volume resistance degradation data of XLPE samples are tested with a24 h interval under the accelerated stressing conditions at(130℃, 12 m/s^2) and(150℃, 8.5 m/s^2), respectively.Nonlinear degradation data obtained from the experiment are transformed to linear intermediate-variable values using time scaling function, and then linearized degradation data are calculated and evaluated on the basis of linear Wiener process model. Considering traditional Arrhenius equation and inverse power criterion, parameters of the linear Wiener model are estimated according to the maximum likelihood function. The relationship curves on probability density and reliability are given, and the lifetime distribution of XLPE under different stressing conditions is also obtained for evaluating the reliability of XLPE insulation. Finally, the life expectancy of XLPE is 17.9 a under an allowance temperature of 90℃ and an actual vibration acceleration of 0.5 m/s^2. The approach and results in this paper may be used for reliability assessment of high-voltage multiple samples or apparatuses.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号