首页> 中文期刊> 《半导体学报》 >Strain tunable band structure of a new 2D carbon allotrope C568

Strain tunable band structure of a new 2D carbon allotrope C568

         

摘要

Recently,C568 has emerged as a new carbon allotrope,which shows semiconducting properties with a band gap around 1 eV and has attracted much attention.In this work,the external strain effects on the electronic properties of C568 have been studied theoretically through first-principle calculations.The numerical results show that while in-plane uniaxial and biaxial strains both reduces the band gap of C568 in case of tensile strain,their effects are quite different in the case of compressive strain.With increasing compressive uniaxial strain,the band gap of C568 first increases,and then dramatically decreases.In contrast,the application of compressive biaxial strain up to -10% only leads to a slight increase of band gap.Moreover,an indirect-todirect gap transition can be realized under both types of compressive strain.The results also show that the optical anisotropy of C568 can be induced under uniaxial strain,while biaxial strain does not cause such an effect.These results indicate good strain tunability of the band structure of C568,which could be helpful for the design and optimization of C568-based nanodevices.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号