首页> 中文期刊>金属学报:英文版 >High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel

High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel

     

摘要

An austenitic stainless steel with 6 wt% Si and multiple secondary phases was produced with the aim to achieve enhanced plasticity during hot deformation.The micro structure of the steel after fracture was characterized via electron back-scattered diffraction,transmission Kikuchi diffraction and scanning transmission electron microscopy.From the tail of the gage to the necking region,the microstructure of the material evolved from low-angle grain boundaries(LAGB s) to mixtures of LAGBs and high-angle grain boundaries(HAGBs),and fine equiaxed recrystallized grains.The elongation to failure in the tensile test exceeds 167%.During the hot deformation,continuous dynamic recrystallization of the austenitic matrix was promoted by the multiple secondary phases.The dislocations introduced by the secondary phases were rearranged and continuously transformed into HAGBs.The initially coarse grains(30.5 μm) were refined into ultra-fine equiaxed grains(1 μm),which contributed significantly the enhanced plasticity during hot deformation of the steel.In the necking area of the sample,twins were nucleated in the stress concentration regions and accommodated the local strain by discontinuous dynamic recrystallization,which was also beneficial to improving the plasticity.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号