首页> 中文期刊>金属学报:英文版 >High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel

High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel

     

摘要

The creep behavior of Fe–17 Cr–1.2 Cu–0.5 Nb–0.01 C ferritic heat-resistant stainless steel was investigated at temperatures ranging from 973 to 1123 K and stresses from 15 to 90 MPa.The evolution of precipitates after creep deformation was analyzed by scanning electron microscopy,energy dispersion spectrum,and transmission electron microscopy.The minimum creep rate decreased with the decrease in the applied load and temperature,thereby extending the rupture life.Cu-rich phase and Nb-rich Laves particles were generated in dominant quantities during the creep process,and the co-growth relationship between them could be detected.Creep rupture was featured by ductile fracture with considerable necking.As increasing the temperature and decreasing the stress,the softening of the metal matrix was accelerated,showing more obvious plastic fl ow.The true stress exponent and activation energy were 4.9 and 375.5 kJ/mol,respectively,indicating that the creep deformation was dominated by the diffusion-controlled dislocation creep mechanism involving precipitate-dislocation interactions.Based on the creep rupture data obtained,the Monkman–Grant relation and Larson-Miller parameter were established,which described the creep rupture life for the studied steel well.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号