首页> 中文期刊>金属学报:英文版 >Molecular Dynamics Simulations and Experimental Investigations of Atomic Diffusion Behavior at Bonding Interface in an Explosively Welded Al/Mg Alloy Composite Plate

Molecular Dynamics Simulations and Experimental Investigations of Atomic Diffusion Behavior at Bonding Interface in an Explosively Welded Al/Mg Alloy Composite Plate

     

摘要

In this study, 6061 aluminum alloy and AZ31 B magnesium alloy composite plate was fabricated through explosive welding. Molecular dynamics(MD) simulations were conducted to investigate atomic diffusion behavior at bonding interface in the AI/Mg composite plate. Corresponding experiments were conducted to validate the simulation results. The results show that diffusion coefficient of Mg atom is larger than that of A1 atom and the difference between these two coefficients becomes smaller with increasing collision velocity. The diffusion coefficient was found to depend on collision velocity and angle. It increases linearly with collision velocity when the collision angle is maintained constant at 10° and decreases linearly with collision angle when the collision velocity is maintained constantly at 440 m/s. Based on our MD simulation results and Fick's second law, a mathematical formula to calculate the thickness of diffusion layer was proposed and its validity was verified by relevant experiments. Transmission electron microscopy and energy-dispersive system were also used to investigate the atomic diffusion behavior at the bonding interface in the explosively welded 6061/AZ31B composite plate. The results show that there were obvious Al and Mg atom diffusion at the bonding interface,and the diffusion of magnesium atoms from magnesium alloy plate to aluminum alloy plate occurs much faster than the diffusion of aluminum atoms to the magnesium alloy plate. These findings from the current study can help to optimize the explosive welding process.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号