首页> 中文期刊>金属学报:英文版 >Microstructure and Tensile Properties of a Nb–Mo Microalloyed 6.5Mn Alloy Processed by Intercritical Annealing and Quenching and Partitioning

Microstructure and Tensile Properties of a Nb–Mo Microalloyed 6.5Mn Alloy Processed by Intercritical Annealing and Quenching and Partitioning

     

摘要

The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号