首页> 中文期刊> 《金属学报:英文版》 >Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500℃ under In-Situ Tension in SEM

Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500℃ under In-Situ Tension in SEM

         

摘要

TA15 alloy fabricated by laser melting deposition was investigated at 500℃ under tensile deformation. The damage behavior of microstructure was analyzed by the real time observation of the microstructure evolution, microcracks initiation and propagation using in-situ tensile equipment fitted in the SEM chamber. Finally, the mechanism of fracture was discussed. The result showed anisotropic mechanical properties in X-and Z-direction. The existence of columnar β grains and its orientation to the tensile direction were the major factors inducing the anisotropic mechanical properties. As compared to Z-direction specimen, high tensile strength was observed in X-direction specimen due to the resistance in slips propagation provided by the prior-β grain boundaries( β GBs). Accumulation of the cracks at prior β GB caused the shear fracture. In case of Z-direction specimen, parallel orientation of prior β GB and GB α with the tensile direction resulted in a homogeneous deformation. The high reduction of cross section showed the enhanced ductile characteristics at high temperature.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号