首页> 中文期刊> 《钢铁研究学报:英文版》 >Grain Growth of Deformation Induced Ferrite in V Microalloyed Low Carbon Steel During Controlled Cooling Process

Grain Growth of Deformation Induced Ferrite in V Microalloyed Low Carbon Steel During Controlled Cooling Process

         

摘要

The effect of vanadium on the DIFT (Deformation Induced Ferrite Transformation) microstructure coarsening in low carbon steel during the continuous cooling processes and isothermal processes at different temperatures were investigated using thermo-simulator.The results showed that the steel containing a small amount of vanadium had the similar velocity of grain growth with the vanadium free steel during the continuous cooling process,but a lower velocity of grain growth than that of vanadium free steel during isothermal processes at high temperatures.On the other hand,the vanadium remarkably inhibited grain growth in the steel containing a high amount of vanadium during both the continuous cooling and isothermal processes.Vanadium dissolved in matrix is indicated as an important factor on restraining grain growth through estimating the driving force of normal grain growth and the resistance of precipitation particles of vanadium on grain growth.The influencing mechanism of vanadium dissolved in matrix on the grain growth during the controlled cooling process is discussed.

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号