首页> 中文期刊> 《钢铁研究学报:英文版》 >Thermomechanical Fatigue Behavior of Powder Metallurgical Nickel Based Superalloy FGH96

Thermomechanical Fatigue Behavior of Powder Metallurgical Nickel Based Superalloy FGH96

         

摘要

The fracture behavior of the thermomechanical fatigue (TMF) of the powder metallurgical nickel based superalloy FGH96 was investigated under in-phase (IP) and out-of-phase (OP) loadings in the temperature range from 550 ℃ to 720 ℃ and the mechanical strain amplitude range from 0.3% to 0.8%. The results show that the FGH96 TMF fracture character is intergranular for the IP samples and transgranular cleavage-like for the OP samples, at the same strain amplitude, the fatigue life is shorter for the IP than that for the OP samples that is related to crack propagation along grain boundary on the IP samples, the γ′ size is larger in the IP than that in the OP sample, which is related to the bulk diffusion processes accelerated by the tensile strain during the high temperature portion of the IP cycle. Dislocation pairs and stacking faults are main microstructures induced by IP TMF, and they are hindered by the grain boundary, which likely resulted in the crack propagation along the grain boundary in the IP samples.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号