首页> 外文期刊>林业研究(英文版) >Three-dimensional light structure of an upland Quercus stand post-tornado disturbance
【24h】

Three-dimensional light structure of an upland Quercus stand post-tornado disturbance

机译:

获取原文
获取原文并翻译 | 示例
       

摘要

Light is the most common limiting factor in forest plant communities,influencing species composition,stand structure,and stand productivity in closed canopy stands.Stand vertical light structure is relatively simple under a closed canopy because most light is captured by overstory trees.However,wind disturbance events create canopy openings from local to landscape scales that increase understory light intensity and vertical light structural complexity.We studied the effects of an EF-1 tornado on horizontal and vertical(i.e.three-dimensional)light structure within a Quercus stand to determine how light structure changed with increasing disturbance severity.We used a two-tiered method to collect photosynthetic photon flux density at 4.67 m and 1.37 m above the forest floor to construct three-dimensional light structure across a canopy disturbance severity gradient to see if light intensity varied with increasing tornado damage.Results indicate that increased canopy disturbance closer to the tornado track increased light penetration and light structure heterogeneity at lower forest strata.Increased light intensity correlated with increased sapling density that was more randomly distributed across the plot and had shifted light capture higher in the stand structure.Light penetration through the overstory was most strongly correlated with decreased stem density in the two most important tree species(based on relative dominance and relative density)in the stand,Quercus alba L.(r=-0.31)and Ostrya virginiana(Mill.)K.Koch(r=-0.27,p<.01),and indicated that understory light penetration was most affected by these two species.As managers are increasingly interested in patterning silvicultural entries on natural disturbances,they must understand residual stand and light structures that occur after natural disturbance events.By providing spatial light data that quantifies light structure post-disturbance,managers can use these results to improve planning required for long-term management.The study also provides comparisons with anthropogenic disturbances to the midstory that may offer useful comparisons to natural analogs for future silvicultural consideration.

著录项

  • 来源
    《林业研究(英文版)》 |2020年第1期|141-153|共13页
  • 作者单位

    Department of Geography University of Alabama Tuscaloosa AL 35487 USA;

    Department of Environmental Science Policy and Management University of California Berkeley CA 94720 USA;

    Northern Research Station USDA Forest Service Columbia MO 65211 USA;

  • 收录信息 中国科学引文数据库(CSCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号