首页> 中文期刊>环境科学学报:英文版 >Effect of drainage on CO_2, CH_4, and N_2O fluxes from aquaculture ponds during winter in a subtropical estuary of China

Effect of drainage on CO_2, CH_4, and N_2O fluxes from aquaculture ponds during winter in a subtropical estuary of China

     

摘要

Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean CO_2flux in the DP was(0.75±0.12)mmol/(m^2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m^2·hr)(p<0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO_2in winter.Mean CH_4and N_2O emissions were significantly higher in the DP compared to those in the UDP(CH_4=(0.66±0.31)vs.(0.07±0.06)mmol/(m^2·hr)and N_2O=(19.54±2.08)vs.(0.01±0.04)μmol/(m^2·hr))(p<0.01),suggesting that drainage would also significantly enhance CH_4and N_2O emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p<0.01),with values of739.18 and 26.46 mg CO_2-eq/(m^2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号