首页> 中文期刊>能源化学:英文版 >Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting

Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting

     

摘要

Hydrogen generation through seawater electrolysis provides a promising,attractive pathway towards the utilization of sustainable energy.However,the catalytic activity and stability of oxygen evolution anode are severely limited by the chloride-induced corrosion and competitive oxidation reactions.In this work,we demonstrate an anion-assisted performance improvement strategy by quick and universal screening of electrolyte additive via correlating Cl-repellency with the anionic properties.Particularly,the addition of phosphate ions is found to enable highly stable alkaline seawater splitting at industry-level current density(0.5 A cm^(-2))over 500 h using transition metal hydroxides as anodic electrocatalysts.In situ experiments and theoretical simulations further reveal that the dynamic anti-corrosion behaviors of surface-adsorbed phosphate ions are attributed to three factors including repelling Cl-ions without significantly blocking OH-diffusion,preventing transition metal dissolution and acting as a local pH buffer to compensate the fast OH-consumption under high current electrolysis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号