首页> 中文期刊>能源化学:英文版 >Enhanced ion conductivity and electrode–electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries

Enhanced ion conductivity and electrode–electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries

     

摘要

Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrolyte interface (SEI) lead to rapid capacity fading and low rate performance.Herein,we report Si nitride (SiN) comprising stoichiometric Si_(3)N_(4) and Li-active anazotic SiN_(x) coated porous Si (p-Si@SiN)for high-performance anodes in LIBs.The ant-nest-like porous Si consisting of 3D interconnected Si nanoligaments and bicontinuous nanopores prevents pulverization and accommodates volume expansion during cycling.The Si_(3)N_(4) offers mechanically protective coating to endow highly structural integrity and inhibit superfluous formation of SEI.The fast ion conducting Li_(3)N generated in situ from lithiation of active SiN_(x) facilitates Li ion transport.Consequently,the p-Si@SiN anode has appealing electrochemical properties such as a high capacity of 2180 mAh g^(-1)at 0.5 A g^(-1) with 84%capacity retention after 200cycles and excellent rate capacity with discharge capacity of 721 mAh g^(-1) after 500 cycles at 5.0 A g^(-1).This work provides insights into the rational design of active/inactive nanocoating on Si-based anode materials for fast-charging and highly stable LIBs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号