首页> 中文期刊> 《能源化学:英文版》 >Cu-substitution P2-Na_(0.66)Mn_(1-x)Cu_(x)O_(2)sodium-ion cathode with enhanced interlayer stability

Cu-substitution P2-Na_(0.66)Mn_(1-x)Cu_(x)O_(2)sodium-ion cathode with enhanced interlayer stability

         

摘要

P2-type Mn-based layered oxides are viewed as promising cathode materials for sodium ion battery by virtue of their high theoretical capacity.Considering that pure Na_(2/3)MnO_(2)suffers from poor cycling performances,Cu-substitution strategy is proposed to effectively alleviate this issue.However,the structural evolution mechanism of the Cu-containing samples still remains unclear.Herein,we propose that CuSubstitution P2-type Na_(0.66)Mn_(1-x)Cu_(x)O_(2)with enlarged lattice parameters are conducive to improving the interlayer structure stability through mitigating TMO_(2)slabs distortion.Proved by synchrotron XAS spectra and ex/in situ XRD,the expansion/contraction of MnO_6 octahedron is dramatically reduced with the increased Cu content,showing the facilitated Na ion diffusion.Furthermore,when the ratio of Cu to Mn reaches 1:4,the phase transition from P2 to P'2 type at the end of discharge can be suppressed,resulting in the improved interlayer skeleton stability.The Cu-containing samples with stable interlayer structure exhibit high capacity retention and outstanding rate performances(a capacity of 79.9 m Ah g^(-1)at 5C).This Cu-substitution strategy provides a promising approach to designing highly stable cathodes.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号