首页> 中文期刊> 《地球科学学刊:英文版》 >A Grey Fuzzy Comprehensive Model for Evaluation of Geological Structure Complexity

A Grey Fuzzy Comprehensive Model for Evaluation of Geological Structure Complexity

             

摘要

Several structure sets (faults and folds) are characterized by their self-similarity properties. Herein, we discuss the degrees of complexity of fractures by introducing the box-counting fractal dimension of faults as a key criterion to be used in comprehensive fuzzy analysis model for evaluation of the complexity of structures. Totally, eight criteria including density, intensity, length of faults, types and box-counting fractal dimension of faults, the intersection angle between faults and coal beds, gradient coefficients, dip angles of the coal beds, and variation coefficients of dip angles of the coal seams, were used for the evaluation purpose. The grey fuzzy comprehensive assessment model was used to rank the relative importance of these criteria. Scores indicating the complexity of structure were calculated on the base of criteria values and their weights for each sub-area of the study area in the Pansan (潘三) coal mine district in the southern Anhui (安徽) Province, China. The result on the calculated complexity of structure is useful for mining planning in the study area.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号