首页> 中文期刊> 《农业科学学报:英文版》 >Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat

         

摘要

The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat(Triticum aestivum L.). Here, a high-throughput germination paper-based plant phenotyping system was used to identify seedling traits in a wheat doubled haploid mapping population, Savannah×Rialto. Significant genotypic and nitrate-N treatment variation was found across the population for seedling traits with distinct trait grouping for root size-related traits and root distribution-related traits. Quantitative trait locus(QTL) analysis identified a total of 59 seedling trait QTLs. Across two nitrate treatments, 27 root QTLs were specific to the nitrate treatment. Transcriptomic analyses for one of the QTLs on chromosome 2 D, which was found under low nitrate conditions, revealed gene enrichment in N-related biological processes and 28 differentially expressed genes with possible involvement in a root angle response. Together, these findings provide genetic insight into root system architecture and plant adaptive responses to nitrate, as well as targets that could help improve N capture in wheat.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号