首页> 中文期刊>矿物冶金与材料学报 >Surface turbulence in a physical model of a steel thin slab continuous caster

Surface turbulence in a physical model of a steel thin slab continuous caster

     

摘要

In the thin slab continuous casting (TSCC) of steel, the issue of optimum fluid flow is very important due to higher casting speeds and has direct influence on the formation of solidified shells and the quality of final products. In the current work, a full-scale physical mod-eling of a thin slab caster on the basis of dimensionless Reynolds and Froude similarity criteria was constructed. The flow pattern in the fun-nel shaped mold with a new tetra-furcated submerged entry nozzle (SEN) was investigated. To determinate optimum operational parameters, some experiments were carried out under various casting conditions. The results show that the tetra-furcated design of the nozzle leads to a special flow pattern in the mold cavity with three-dimensional recirculating flow. It is also shown that the increase of casting speed and gas injection results in surface turbulence. On the other hand, using a higher depth of SEN decreases the vortex in the free surface of the caster. To avoid surface turbulent and related casting problems, it is recommended to use 30-cm and 40-cm SEN depth at the casting speeds of 3.5 and 4.5 m/min, respectively.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号