首页> 中文期刊> 《安徽地质》 >Nitrogen-Doped TiO2–C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries

Nitrogen-Doped TiO2–C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries

         

摘要

Nitrogen-doped TiO2–C composite nanofibers (TiO2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO2/N–C NFs exhibit a large specific surface area (213.04 m2 g-1) and a suitable nitrogen content (5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions (DNa+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g-1 at 0.05 A g-1 and an outstanding long cycling performance even at a high current density (118.1 mAh g-1) with almost no capacity decay at 5 A g-1 over 2000 cycles. Therefore, this work sheds light on the application of TiO2-based materials in sodium-ion batteries.

著录项

  • 来源
    《安徽地质》 |2018年第4期|253-265|共13页
  • 作者单位

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

    National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号