首页> 中文期刊> 《基因组蛋白质组与生物信息学报:英文版》 >Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites

Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites

         

摘要

As a newly-identified protein post-translational modification, malonylation is involved in a variety of biological functions. Recognizing malonylation sites in substrates represents an initial but crucial step in elucidating the molecular mechanisms underlying protein malonylation. In this study, we constructed a deep learning(DL) network classifier based on long short-term memory(LSTM) with word embedding(LSTMWE) for the prediction of mammalian malonylation sites.LSTMWEperforms better than traditional classifiers developed with common pre-defined feature encodings or a DL classifier based on LSTM with a one-hot vector. The performance of LSTMWE is sensitive to the size of the training set, but this limitation can be overcome by integration with a traditional machine learning(ML) classifier. Accordingly, an integrated approach called LEMP was developed, which includes LSTMWEand the random forest classifier with a novel encoding of enhanced amino acid content. LEMP performs not only better than the individual classifiers but also superior to the currently-available malonylation predictors. Additionally, it demonstrates a promising performance with a low false positive rate, which is highly useful in the prediction application. Overall, LEMP is a useful tool for easily identifying malonylation sites with high confidence.LEMP is available at http://www.bioinfogo.org/lemp.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号