首页> 中文期刊> 《材料科学技术:英文版》 >Microstructure and Thermoelectric Properties of Bi- and Cu-Substituted Ca_3Co_4O_9 Oxides

Microstructure and Thermoelectric Properties of Bi- and Cu-Substituted Ca_3Co_4O_9 Oxides

         

摘要

Bi- and Cu-substituted Ca3Co4O9 samples were prepared by conventional solid-state reaction method and the effect of element substitution on the microstructures and thermoelectric properties was investigated. Partial substitution of Cu for Co leads to an increase in electrical conductivity and a decrease in Seebeck coeffcient due to the rise of hole concentration. The microstructure of Cu-substituted sample is almost unchanged compared with undoped Ca3Co4O9. On the other hand, partial substitution of Bi for Ca gives rise to a significant increase in the grain size, and c-axis-oriented structure can be formed in Ca2.7Bi0.3Co4O9, resulting in an obvious increase in electrical conductivity. Cu and Bi co-substitution further increases the grain growth and the electrical conductivity of Ca2.7Bi0.3Co3.7Cu0.3O9. Thus, Cu and Bi co-substitution samples possess the optimal thermoelectric performance at high temperature and the highest value of power factor can reach 3.1×10-4 Wm-1·K-2 at 1000 K.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号