首页> 中文期刊> 《自然科学期刊(英文)》 >Einstein-Kaluza Combined Spacetime as the Optimal and Simplest Framework to Compute and Understand Dark Matter, Pure Dark Energy and Measurable Ordinary Energy

Einstein-Kaluza Combined Spacetime as the Optimal and Simplest Framework to Compute and Understand Dark Matter, Pure Dark Energy and Measurable Ordinary Energy

         

摘要

In this rather short communication we hope to draw attention to a new and rather exciting finding which we think represents an important and non-trivial insight into the current dark energy and dark matter cutting edge research [1-11]. In short we found that a combination of the basic invariant of Einstein D = 4 and Kaluza D = 5 spacetime manifold is the simplest and optimal setting to perform computation [7, 8] and gain insight into the major cosmological problem of dark matter, accelerated cosmic expansion, missing dark energy of the universe [1] as well as the corresponding measurable ordinary energy density which was found, to the surprise of the entire scientific community, to be a mere 4.5% of what was expected [1, 2] based on some of our otherwise most cherished and trusted theories [1-4]. In particular we must stress the importance of the physical insight gained about the source of the difference between the three distinct categories of energy as afforded by the new spacetime picture [7, 8]. Roughly speaking our new conception of spacetime considers a 5 dimensional Kaluza spacetime manifold effectively encasing the 4 dimensional Einstein spacetime [7-9].

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号