首页> 中文期刊>自然科学期刊(英文) >Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China

Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China

     

摘要

Spatial interpolation methods are frequently used to estimate values of meteorological data in locations where they are not measured. However, very little research has been investigated the relative performance of different interpolation methods in meteorological data of Xinjiang Uygur Autonomous Region (Xinjiang). Actually, it has importantly practical significance to as far as possibly improve the accuracy of interpolation results for meteorological data, especially in mountainous Xinjiang. There- fore, this paper focuses on the performance of different spatial interpolation methods for monthly temperature data in Xinjiang. The daily observed data of temperature are collected from 38 meteorological stations for the period 1960- 2004. Inverse distance weighting (IDW), ordinary kriging (OK), temperature lapse rate method (TLR) and multiple linear regressions (MLR) are selected as interpolated methods. Two rasterized methods, multiple regression plus space residual error and directly interpolated observed temperature (DIOT) data, are used to analyze and compare the performance of these interpolation methods respectively. Moreover, cross-validation is used to evaluate the performance of different spatial interpolation methods. The results are as follows: 1) The method of DIOT is unsuitable for the study area in this paper. 2) It is important to process the observed data by local regression model before the spatial interpolation. 3) The MLR-IDW is the optimum spatial interpolation method for the monthly mean temperature based on cross-validation. For the authors, the reliability of results and the influence of measurement accuracy, density, distribution and spatial variability on the accuracy of the interpolation methods will be tested and analyzed in the future.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号