首页> 中文期刊> 《天文学与天体物理学国际期刊(英文)》 >Effect of Interplanetary Matter on the Spin Evolutions of Venus and Mercury

Effect of Interplanetary Matter on the Spin Evolutions of Venus and Mercury

         

摘要

Differs from other planets in the Solar System, the Venus has a retrograde and long-period rotation. To ex-plain the special spin of the Venus, mechanisms such as core mantle friction inside planet[1], atmospheric tide[2-7], or twain effects together[8-11], and impact with a giant object[12,13] have been suggested. These mecha-nisms, however, need specific initial conditions with a remote probability [3,5]. The slow spin of Mercury cannot be explained very well. One viewpoint is that the unusual spins of Venus and Mercury might be naturally evolved from similar initial states by interaction with interplanetary matter during long-time evolu-tion. Based on the theory of planet formation and the orderliness of planetary distance, we discuss the possi-bility that the radial density distribution of interplanetary matter is undulated, and the wave function satisfies the formal Schr?dinger equation. We calculate the evolution of planet spins under the effect of interplanetary matter during planets revolution and rotation. The results show that planets can naturally evolve to the cur-rent state (particularly the negative spin of the Venus) given the similar initial quick and positive spins.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号