首页> 中文期刊> 《电子器件冷却与温度控制期刊(英文)》 >Multi-Physics Numerical Simulation of Thermoelectric Devices

Multi-Physics Numerical Simulation of Thermoelectric Devices

         

摘要

To optimize the performance of a thermoelectric device for a specific application, the device should be uniquely designed for the application. Achieving an optimum design requires accurate measurements and credible analysis to evaluate the performance of the device and its relationship with the device parameters. To do that, we designed, fabricated, and tested four devices based on Bi2Te3 and Sb2Te3. To evaluate the accuracy of our analysis, experimental measurements were compared with the numerical simulation performed using COMSOLTM. The two sets of results were found to be in full agreement. This is a proof of the accuracy of our experimental measurements and the credibility of our simulation. The study shows that testing or simulating the devices without heat sink will lead to skewed results. This is because the junction will not hold its temperatures value, but will, instead, automatically change its value to the direction of thermal equilibrium. The study shows also that there is no reciprocity between the input and the output characteristics of the devices. Therefore, a device optimized for cooling and heating may not be automatically optimized for energy harvesting. For heating and cooling, temperature sensitivity should be optimized;while for energy harvesting, voltage sensitivity should be optimized. Using heat sink, our devices achieved a voltage sensitivity of 187.77 μV/K and a temperature sensitivity of 6.12 K/mV.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号