首页> 中文期刊>遥感技术进展(英文) >Building Change Detection Improvement Using Topographic Correction Models

Building Change Detection Improvement Using Topographic Correction Models

     

摘要

In the change detection application of remote sensing, commonly the variation in the brightness values of the pixels/objects in bi-temporal image is used as an indicator for detecting changes. However, there exist effects, other than a change in the objects that can cause variations in the brightness values. One of the effects is the illumination difference on steep surfaces mainly steeproofs of houses in very high resolution images, specifically in off-nadir images. This can introduce the problem of false change detection results. This problem becomes more serious in images with different view-angles. In this study, we propose a methodology to improve the building change detection accuracy using imagery taken under different illumination conditions and different view-angles. This is done by using the Patch-Wise Co-Registration (PWCR) method to overcome the misregistration problem caused by view-angle difference and applying Topographic Correction (TC) methods on pixel intensities to attenuate the effect of illumination angle variation on the building roofs. To select a proper TC method, four of the most widely used correction methods, namely C-correction, Minnaert, Enhanced Minnaert (for slope), and Cosine Correction are evaluated in this study. The results proved that the proposed methodology is capable to improve the change detection accuracy. Specifically, the correction using the C-correction and Enhanced Minnaert improved the change detection accuracy by around 35% in an area with a large number of steep-roof houses imaged under various solar angles.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号