首页> 中文期刊> 《世界心脏病学杂志:英文版(电子版)》 >Nomenclature,categorization and usage of formulae to adjust QT interval for heart rate

Nomenclature,categorization and usage of formulae to adjust QT interval for heart rate

         

摘要

Assessment of the QT interval on a standard 12 lead electrocardiogram is of value in the recognition of a number of conditions. A critical part of its use is the adjustment for the effect of heart rate on QT interval. A systematic search was conducted to identify studiesthat proposed formulae to standardize the QT interval by heart rate. A nomenclature was developed for current and subsequent equations based on whether they are corrective(QTc) or predictive(QTp). QTc formulae attempt to separate the dependence of the length of the QT interval from the length of the RR interval. QTp formulae utilize heart rate and the output QTp is compared to the uncorrected QT interval. The nomenclature consists of the first letter of the first author's name followed by the next two consonance(whenever possible) in capital letters; with subscripts in lower case alphabetical letter if the first author develops more than one equation. The single exception was the Framingham equation,because this cohort has developed its own "name" amongst cardiovascular studies. Equations were further categorized according to whether they were linear,rational,exponential,logarithmic,or power based. Data show that a person's QT interval adjusted for heart rate can vary dramatically with the different QTc and QTp formulae depending on the person's heart rate and QT interval. The differences in the QT interval adjustment equations encompasses values that are considered normal or significant prolonged. To further compare the equations,we considered that the slope of QTc versus heart rate should be zero if there was no correlation between QT and heart rate. Reviewing a sample of 107 patient ECGs from a hospital setting,the rank order of the slope- from best(closest to zero) to worst was QTc DMT,QTc RTHa,QTc HDG,QTc GOT,QTcF RM,QTcF RD,QTcB ZT and QTcM YD. For two recent formulae based on large data sets specifically QTcD MT and QTcR THa,there was no significant deviation of the slope from zero. In summary a nomenclature permits easy reference to QT formulae that adjust for heart rate. Twenty different formulae can produce discordant calculations of an adjusted QT interval. While the formulae developed by Bazett and Fridericia(QTc BZT and QTc FRD respectively) may continue to be used clinically,recent formulae from large population studies specifically QTcD MT and QTcR THa appear to be betterto adjust QT for heart rate in clinical practice.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号