首页> 中文期刊> 《生物材料与纳米技术(英文)》 >Unbinding Process of Amelogenin and Fibrinogen Adsorbed on Different Solid Surfaces Using AFM

Unbinding Process of Amelogenin and Fibrinogen Adsorbed on Different Solid Surfaces Using AFM

         

摘要

The interaction of proteins with solid surfaces is a fundamental phenomenon in the biomaterials field. We investigated, using atomic force microscopy (AFM), the interactions of a recombinant amelogenin with titanium, a biphasic calcium phosphate (BCP) and mica. The unbinding processes were compared to those of an earlier studied protein, namely fibrinogen. Force spectroscopy (AFM) experiments were carried out at 0 ms, 102 ms, 103 ms and 104 ms of contact time. In general, the rupture forces increased as a function of interaction time. The unbinding forces of amelogenin interacting with the BCP surface were always stronger than those of the amelogenin-titanium system. The unbinding forces of fibrinogen interacting with the BCP surface were always much stronger than those of the fibrinogen-titanium system. For the most part, this study provides direct evidence that recombinant amelogenin binds more strongly than fibrinogen on the studied substrates.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号