首页> 中文期刊> 《美国植物学期刊(英文)》 >Effects of Residue Management and Cropping Systems on Wheat Yield Stability in a Semiarid Mediterranean Clay Soil

Effects of Residue Management and Cropping Systems on Wheat Yield Stability in a Semiarid Mediterranean Clay Soil

         

摘要

Agriculture is the single biggest user of land and water in Morocco;however its performances are still low due to high rainfall variation and rates of soil productivity depletion. Increasing concerns about soil and environment quality degradation have raised the need to review existing tillage management systems and develop new systems for seed-bed preparation. Consequently, No-tillage is found a promising practice of soil management to improve simultaneously soil quality and wheat production in semiarid Morocco. However, residue management under No-tillage was Not yet studied in conjunction with wheat rotation. Therefore, a field study was conducted in the semiarid Chaouia Plain of Morocco during the period from 1994 to 2003, in order to evaluate the impacts of different tillage practices (conventional tillage (CT), No-tillage (NT));No-tillage wheat residue management scenarios (total NTr, partial NTp and No-removal of residues NTm) and crop rotations (continuous wheat (CW), Wheat-Fallow (WF), Wheat-Maize-Fallow (WMF), Wheat-Lentil-Fallow (WLF) and Wheat-Barley-Fallow (WBF)) on wheat production. Over-years, conventional tillage system permitted lower yield of wheat while NT maintenance of crop residue at the surface is needed to increase it. Basically, NTp could be adopted in mixed crop-livestock systems of semiarid areas for the purpose of guarantying grain and feed. Wheat yields were the lowest under continuous wheat for all years. Wheat-fallow rotation is an important option in dry years or areas, while wheat-fallow-lentil or barley rotations are recommended in better environments. Stability analysis indicated that yields in the No-tillage system were less influenced by adverse growing conditions than conventional tillage system, particularly under low rainfall. These results indicate that improved soil quality under No-tillage enhanced wheat yield stability by reducing the impact of adverse growing conditions.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号