首页> 中文期刊>碳能源(英文) >Counter-ion insertion of chloride in Mn3O4 as cathode for dual-ion batteries: A new mechanism of electrosynthesis for reversible anion storage

Counter-ion insertion of chloride in Mn3O4 as cathode for dual-ion batteries: A new mechanism of electrosynthesis for reversible anion storage

     

摘要

Irreversible reductive insertion of Zn2+transforms Mn3O4 such that the resulting Zn0.2Mn3O4 exhibits highly reversible storage properties of chloride ions,thus rendering Zn0.2Mn3O4 an excellent cathode of aqueous dual-ion batteries.With Zn2+trapped,Zn0.2Mn3O4 delivers the chloride-storage capacity over 200 mAh/g at an average potential of 1.6 V vs Zn2+/Zn by reversibly forming a new ionic compound equivalent to Zn0.2Mn3O4Cl1.7.Electrochemical quartz crystal microbalance results suggest chloride as the primary charge carrier in the reversible oxidative anion insertion.The Mn3O4 anion-hosting cathode couples with Zn metal anode in a full-cell dual-ion battery,demonstrating stable cycling in practical pouch cells with an energy density of 150 Wh/kg based on the mass of both electrodes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号