首页> 中文期刊>美国计算数学期刊(英文) >Accuracy and Computational Cost of Interpolation Schemes While Performing iN/i-Body Simulations

Accuracy and Computational Cost of Interpolation Schemes While Performing iN/i-Body Simulations

     

摘要

The continuous approximations play a vital role in N-body simulations. We constructed three different types, namely, one-step (cubic and quintic Hermite), two-step, and three-step Hermite interpolation schemes. The continuous approximations obtained by Hermite interpolation schemes and interpolants for ODEX2 and ERKN integrators are discussed in this paper. The primary focus of this paper is to measure the accuracy and computational cost of different types of interpolation schemes for a variety of gravitational problems. The gravitational problems consist of Kepler’s two-body problem and the more realistic problem involving the Sun and four gas-giants—Jupiter, Saturn, Uranus, and Neptune. The numerical experiments are performed for the different integrators together with one-step, two-step, and three-step Hermite interpolation schemes, as well as the interpolants.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号