首页> 中文期刊> 《现代物理(英文) 》 >Hamiltonian of Acoustic Phonons in Inhomogeneous Solids

Hamiltonian of Acoustic Phonons in Inhomogeneous Solids

             

摘要

Theoretical solid-state physicists formulate their models usually in the form of a Hamiltonian. In quantum mechanics, the Hamilton operator (Hamiltonian) is of fundamental importance in most formulations of quantum theory. Mentioned operator corresponds to the total energy of the system and its spectrum determines the set of possible outcomes when one measures the total energy. Interpretation of results obtained by the applying of models based on the Hamiltonian indicates very specific mechanisms of some observed phenomena that are not fully consistent with the experience. Such approach may occasionally lead to surprises when obtained results are confronted with expectations. The aim of this work is to find Hamilton operator of acoustic phonons in inhomogeneous solids. The transport of energy in the vibrating crystal consisting of ions whose properties differ over long distances is described in the work. We modeled crystal lattice by 1D “inhomogeneous” ionic chain vibrating by acoustic frequencies and found the Hamiltonian of such system in the second quantization. The influence of long-distance inhomogeneities on the acoustic phonons quantum states can be discussed on basis of our results.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号