首页> 中文期刊> 《材料科学建模与数值模拟(英文)》 >Numerical Simulation of Varied Buffer Layer of Solar Cells Based on Cigs

Numerical Simulation of Varied Buffer Layer of Solar Cells Based on Cigs

         

摘要

Numerical simulation has been used to investigate the effect of different buffer?layer components on the performance of CuInGaSe2?solar cells?with SCAPS-1D?software. The main photovoltaic parameters of simulated devices: open-circuit?voltage (Voc), short-circuit current (Jsc), fill factor (FF), and conversion efficiency (h),?areanalysed as a function of thickness and temperature in the different buffer layers used. According to numerical simulation the highest conversion?efficiency (23%) of CIGS solar cell is reached for the CdS buffer layer. This?result is validated by experimental results?(20%). At 300 K, when the thickness?of?the buffer layer (CdS, ZnS, ZnSe,?InSe2) increases from 100 nm to 500?nm,?with the other parameters maintained constant, the efficiency decreases. When the temperature increases from 300 K to 400 K,?with the other parameters maintained?constant, both open circuit voltage and conversion efficiency also decrease.?The?effect of dual buffer layers of ZnS/CdS has also been analysed and his efficiency increases?of 3% than a single buffer CdS.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号