首页> 中文期刊> 《材料科学技术:英文版》 >Built in electric field boosted photocatalytic performance in a ferroelectric layered material SrBi_(2)Ta_(2)O_(9)with oriented facets:Charge separation and mechanism insights

Built in electric field boosted photocatalytic performance in a ferroelectric layered material SrBi_(2)Ta_(2)O_(9)with oriented facets:Charge separation and mechanism insights

         

摘要

Antibiotics have received increasing attention due to their potential adverse effects on aquatic life and human health.How to efficiently degrade them into harmless substances is a challenging subject.Ferroelectric materials with a built-in electric field can offer a strong separation ability for the photoinducedcharge pairs and are now found to be used as photocatalysts.Herein,a series of different morphologies of SrBi_(2)Ta_(2)O_(9)ferroelectric photocatalysts with high antibiotic degradation efficiency have been successfully synthesized through a molten salt method.With the addition of KCl,SrBi_(2)Ta_(2)O_(9)(SBTO 3)with exposed(001)facets shows the most excellent photocatalytic activity for decomposing tetracycline(TC)and ciprofloxacin(CIP)under visible light illumination(λ>420 nm).The rate constants of SBTO 3 for TC and CIP degradation are 1.38×10^(–1)and 4.54×10^(–2)min^(–1),which are 18 and 138 times that of the unmodified sample,respectively.The enhancement of photocatalytic performance is mainly attributed to the spontaneous polarization electric field along the[001]direction which provides a strong driven force for the separation of photoinduced charges.The KPFM results also confirm that the superior photocatalytic activity is consistent with the big large surface potential changes before and after light irradiation.The possible degradation pathways and intermediates of TC and CIP were well analyzed by DFT calculation and LC-MS.The results highlight that morphology control of the ferroelectric materials exhibits enhanced photocatalytic performance for the degradation of the antibiotic.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号