首页> 中文期刊> 《材料科学技术:英文版》 >On the shear modulus and thermal effects during structural relaxation of a model metallic glass:Correlation and thermal decoupling

On the shear modulus and thermal effects during structural relaxation of a model metallic glass:Correlation and thermal decoupling

         

摘要

Pd_(40)Ni_(40)P_(20)(at.%)samples with different enthalpy states were fabricated through high-pressure torsion or sub-Tg annealing of the as-cast material.Subsequently,the underlying structural relaxation was studied by in-situ shear modulus measurements and modulated differential scanning calorimetry.The results show that high-pressure torsion leads to shear modulus softening and an increase of the nonreversible exothermic enthalpy,indicating a significant structural rejuvenation,while sub-Tg annealing causes shear modulus hardening and a decrease of the nonreversible exothermic enthalpy.The reversible endothermic effect which can reflect the fractional change of supercooled liquid with temperature was found to be almost identical for all samples,and independent of deformation or thermal history.The total heat flow can be well correlated with the shear modulus within the framework of interstitialcy theory.Furthermore,we demonstrate that the structural relaxation below Tg decouples into internal stress relaxation andβ-relaxation.In addition,this work indicates that the processes ofα-relaxation andβ-relaxation in the metallic glass are of similar structural origin but occur on different spatial scales.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号