首页> 中文期刊> 《材料科学技术:英文版》 >Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO_(2) reduction and hydrogen production

Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO_(2) reduction and hydrogen production

         

摘要

Single-atom catalysts(SACs)have emerged as an advanced frontier in heterogeneous catalysis due to their potential to maximize the atomic efficiency.Herein,covalent triazine-based frameworks(CTFs)confining cobalt single atoms(Co-SA/CTF)photocatalysts have been synthesized and used for efficient CO_(2) reduction and hydrogen production under visible light irradiation.The resulted Co-SA/CTF demonstrate excellent photocatalytic activity,with the CO and H2 evolution rates reaching 1665.74μmol g^(−1) h^(−1) and 1293.18μmol g^(−1) h^(−1),respectively,far surpassing those of Co nanoparticles anchored CTF and pure CTF.A variety of instrumental analyses collectively indicated that Co single atoms sites served as the reaction center for activating the adsorbed CO_(2) molecules,which significantly improved the CO_(2) reduction performance.Additionally,the introduction of Co single atoms could accelerate the separation/transfer of photogenerated charge carriers,thus boosting the photocatalytic performance.This study envisions a novel strategy for designing efficient photocatalysts for energy conversion and showcases the application of CTFs as attractive support for confining metal single atoms.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号