首页> 中文期刊> 《材料科学技术:英文版》 >Low-cost and efficient Mn/CeO_(2) catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method

Low-cost and efficient Mn/CeO_(2) catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method

         

摘要

Colloidal solution combustion synthesis(CSCS)is a simple and easy method for mass-production of crystalline nanomaterials with tunable pore structure.In this work,mesoporous Mn/CeO_(2) catalysts were fabricated via CSCS method coupled with a dip-coating process and used for photocatalytic oxidation(PCO)of toluene.Under vacuum ultraviolet(VUV)irradiation,a high toluene removal efficiency of about 92%was achieved with a toluene reaction rate of about 118μmol/g/h in a continuous flow reactor.A possible degradation pathway was proposed based on the analysis of intermediates by Fourier transform infrared photoluminescence spectra(FTIR)and GC-Mass.Hydrogen temperature-programmed reduction(H_(2)-TPR),Brunauer-Emmett-Teller(BET)surface areas,photoluminescence spectra(PL)spectra and X-ray photoelectron spectroscopy(XPS)were carried out to analyze physical and chemical properties of the catalysts.Compared with Mn_(x)Ce_(1-x)O_(2) catalysts synthesized by one step CSCS method,Mn/CeO_(2) has a higher photocatalytic activity,which is attributed to the presence of higher contents of Ce^(3+),Mn^(2+)and Mn^(3+)species.The presence of higher contents of these species plays a key role in the activity enhancement of toluene oxidation and ozone decomposition.This method is facile,efficient and scalable,and it may become a promising industrial application technology for catalyst synthesis in the near future.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号